
1
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

“Software Aging”

D. L. Parnas

2
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software Aging

“Programs, like people, get old. We can’t prevent aging, but

we can understand its causes, take steps to limit its effects,

temporarily reverse some of the damage it has caused, and

prepare for the day when the software is no longer viable. ...

(We must) lose our preoccupation with the first release and

focus on the long term health of our products.”

D.L. Parnas

3
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software “Aging”?

“It does not make sense to talk about
software aging!”

Software is a mathematical product, mathematics
does not decay with time.
If a theorem was correct 200 years ago, it will be
correct tomorrow.
If a program is correct today, it will be correct 100
years from now.
If a program is wrong 100 years from now, it must
have been wrong when it was written.

All of the above statements are true, but not
really relevant.

4
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software Does Age

Software aging is gaining in significance
because:

of the growing economic importance of
software,

software is the “capital” of many high-tech
firms.

5
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software Does Age

The authors and owners of new software
products often look at aging software with
disdain.

“If only the software had been designed
using today’s languages and techniques …”

Like a young jogger scoffing at an 86 year old
man (ex-champion swimmer) and saying that
he should have exercised more in his youth!

6
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

The Causes of Software Aging

There are two types of software aging:

Lack of Movement: Aging caused by the failure
of the product’s owners to modify it to meet
changing needs.

Ignorant Surgery: Aging caused as a result of
changes that are made.

This “one-two punch” can lead to rapid
decline in the value of a software product.

7
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Lack of Movement

Unless software is frequently updated, its
user’s will become dissatisfied and change to
a new product.

Excellent software developed in the 60’s
would work perfectly well today, but nobody
would use it.

That software has aged even though nobody
has touched it.

Actually, it has aged because nobody
bothered to touch it.

8
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Ignorant Surgery

One must upgrade software to prevent
aging.

Changing software can cause aging too.

Changes are made by people who do
not understand the software.

Hence, software structure degrades.

9
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Ignorant Surgery (Cont’d)

After many such changes nobody
understands the software:

the original designers no longer understand the
modified software,

those who made the modification still do not
understand the software.

Changes take longer and introduce new bugs.

Inconsistent and inaccurate documentation
makes changing the software harder to do.

10
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

The Cost of Software Failure

Inability to keep up,

reduced performance,

decreasing reliability.

11
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Inability To Keep Up

As software ages, it grows bigger.

“Weight gain” is a result of the fact that the
easiest way to add a feature is to add new
code.

Changes become more difficult as the size of
the software increases because:

There is more code to change,
it is more difficult to find the routines that must be
changed.

Result: Customers switch to a “younger”
product to get the new features.

12
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Reduced Performance

As the size of the program grows, it places
more demands on the computer memory.

Customers must upgrade their computers to
get acceptable response.

Performance decreases because of poor
design that has resulted from long-term ad
hoc maintenance.

A “younger” product will run faster and use
less memory because it was designed to
support the new features.

13
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Decreasing Reliability

As the software is maintained, errors are
introduced.

Many studies have shown that each time an
attempt is made to decrease the failure rate
of a system, the failure rate got worse!

That means that, on average, more than one
error is introduced for every repaired error.

14
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Decreasing Reliability (Cont’d)

Often the choice is to either:

abandon the project

stop fixing bugs

For a commercial product, Parnas was
once told that the list of known
unrepaired bugs exceeded 2,000.

15
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Reducing the Cost of SW Aging

We should be looking far beyond the
first release to the time when the
product is old.

Inexperienced programmers get a
“rush” after the first successful compile
or demonstration.

Experienced programmers realize that
this is only the beginning ...

16
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Reducing the Cost of SW Aging
(Cont’d)

Responsible, professional, organizations
realize that more work is invested
between the time after the first
successful run and the first release than
is required to get the first successful
run.

Extensive testing and rigorous reviews
are necessary.

17
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Preventive Medicine

Design for success

Keep records (documentation)

Seek second opinions (reviews)

18
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Design for Success

Design for change.

This principle is known by various
names:

information hiding

abstraction

separation of concerns

data hiding

object-orientation

19
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Design for Change

To apply this principle one begins by trying to
characterize the changes that are likely to
occur over the “lifetime” of a product.

Since actual changes cannot be predicted,
predictions will be about classes of changes:

changes in the UI

change to a new windowing system

changes to data representation

porting to a new operating system ...

20
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Design for Change (Cont’d)

Since it is impossible to make
everything equally easy to change, it is
important to:

estimate the probabilities of each type of
change

organize the software so that the items
that are most likely to change are
“confined” to a small amount of code

21
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Why is Design for Change Ignored?

Textbooks fail to discuss the process of
estimating the probability of change for
various classes of changes.

Programmers are impatient because they are
too eager to get the first version working.

Designs that result from this principle are
different from the “natural” designs of the
programmer’s intuition.

22
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Why is Design for Change Ignored?
(Cont’d)

Few good examples of the application
of the principle. Designers tend to
mimic other designs they have seen.

Programmers tend to confuse design
principles with languages.

Many practitioners lack training in
software development.

23
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Keeping Records (Documentation)

Even when software is well designed, it is
often not documented.

When documentation is present it is often:

poorly organized

inconsistent

incomplete

written by people who do not understand the
system

24
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Documentation

Hence, documentation is ignored by
maintainers.

Worse, documentation is ignored by
managers because it does not speed up
the initial release.

25
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Second Opinions (Reviews)

In engineering, as in medicine, the
need for reviews by other professionals
is never questioned.

In designing a building, ship, aircraft,
there is always a series of design
documents that are carefully reviewed
by others.

26
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Reviews
This is not true in the software industry:

Many programmers have no professional training
in software at all.

Emphasis of CS degrees on mathematics and
science; professional discipline is not a topic for a
“liberal” education.

Difficult to find people who can serve as quality
reviewers; no money to hire outsiders.

Time pressure misleads designers into thinking
that they have no time for proper reviews.

Many programmers resent the idea of being
reviewed.

27
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Reviews

Every design should be reviewed and
approved by someone whose
responsibilities are for the long-term
future of the product.

28
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Why is Software Aging Inevitable?

Our ability to design for change depends on
our ability to predict the future.

We can do so only approximately and
imperfectly.

Over a period of years:

changes that violate original assumptions will be
made

documentation will never be perfect

reviewers are bound to miss flaws ...

29
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Why is Software Aging Inevitable?
(Cont’d)

Preventive measures are worthwhile but
anyone who thinks that this will
eliminate aging is living in a dream
world.

30
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software Geriatrics

Retroactive Documentation:

A major step in slowing the age of older
software, and often rejuvenating it, is to
upgrade the quality of the documentation.

Retroactive Modularization:

Change structure so that each module
hides a design decision that is likely to
change.

31
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Software Geriatrics (Cont’d)

Amputation:

A section of code has been modified so
often, and so thoughtlessly, that it is not
worth saving.

Major Surgery (Restructuring):

Identify and eliminate redundant
components and gratuitous dependencies.

32
© Drexel University Software Engineering Research Group (SERG)
http://serg.cs.drexel.edu

Planning Ahead

It’s time to stop acting as if “getting it to run”
was the only thing that matters.

Designs and changes have to be documented
and carefully reviewed.

If it’s not documented, it’s not done.

In other areas of engineering, product
obsolescence is recognized and included in
design and marketing plans.

The same should be done for software
engineering.

	“Software Aging”
	Software Aging
	Software “Aging”?
	Software Does Age
	Software Does Age
	The Causes of Software Aging
	Lack of Movement
	Ignorant Surgery
	Ignorant Surgery (Cont’d)
	The Cost of Software Failure
	Inability To Keep Up
	Reduced Performance
	Decreasing Reliability
	Decreasing Reliability (Cont’d)
	Reducing the Cost of SW Aging
	Reducing the Cost of SW Aging (Cont’d)
	Preventive Medicine
	Design for Success
	Design for Change
	Design for Change (Cont’d)
	Why is Design for Change Ignored?
	Why is Design for Change Ignored? (Cont’d)
	Keeping Records (Documentation)
	Documentation
	Second Opinions (Reviews)
	Reviews
	Reviews
	Why is Software Aging Inevitable?
	Why is Software Aging Inevitable? (Cont’d)
	Software Geriatrics
	Software Geriatrics (Cont’d)
	Planning Ahead

