(Mf"’
?/‘(ﬂ'l’ ,%{lf p & Okl/\m\‘&\\QNJ

Appears in IMSA'92 Proceedings (Workshop on Reflection and Meta-level Architecuures).
Towards a New Model of Abstraction in the Engineering of Software

Gregor Kiczales
Xerox Palo Alto Research Center®

We now come to the decisive step of mathematical abstraction: we forget about what the symbols stand for...

M}Mﬂ"‘“

[The mathematician] need not be idle; there are many operations he can carry out with these symbols, without

ever having to look at the things they stand for. .(Jﬂ
Hermann Weyl, “The Mathematical Way of Thinking " intro 0 “?"
(This appears at the beginning of the Building Abstractions With Data chapter of “Structure and Interpretation Jewdbt

of Computer Programs” by Harold Abelson and Gerald Jay Sussman.)

Vb.‘-\'- (+ ulﬂh")

- Jppevr
This is an abridged version of a longer paper in preparation. The b v &
eventual goal is to present, to those outside of the reflection and J~"'

meta-level architectures community, the intuitions surrounding open V § g %Sid;b&m
implementations and the use of meta-level architectures, particu- . h,l*"
larly metaobject protocols, to achieve them, (Wi Window System
The view of abstraction on which software engineenngis based dogs W o

i i Operating System

—
ally possible. This discrepancy between our basic conceptual foun- JM‘ o
dations and practice appears to be at the heart of a number of porta- " ALK Ay L' o
nlity and complexity problems, b «h.., 4 U gt
ork on metaobject protocols suggests a new view, in which ab- jl) [AL T
stractions irimpl i i thai

makes a principled division betseen the functionality they provide Figure 1: The layers of abstraction in the display portion of a
and the underlying implementation. By resolving the discrepancy spreadsheet application.

with practice, this new view appears to lead to simpler programs.

It also has the potential to resolve important outstanding problems

surround reuse, software building blocks, and high-level program- functionali “implementation details” from the client
ming languag:'s. & gh progl above.” To the degree that an abstraction provides powerful, com-

posable funcfionality, and is free of implementation issues, we call

9 : it clean_or “elegant” In the particular case of the window system,
Abstraction In Action the abstraction would provide the ability to make windows, arrange
, ; UL themon the screen, display in them, track the mouse etc. Issuessuch
I want to start by talking about the current view of abstraction in as how the windows are represented in memory and how the mouse
software engineering: how we use it, what the principles are, what i3 yracked would be hidden as implementation details.
the terminology is and what it does for us. Rather than atiempling There seem to be (at least) three basic principles underlying our
any sort of formal definition, I will just use an example. 1 will talk M‘Jﬂﬁm’“i
about the implementation of a familiar system, using familiar terms
of abstraction, with the goal of getting the terminology I am going o The first, and most important, has to do with management of
10 use out on the table. complexity. In this sense, abstraction is a primary concepl in ‘
Consider the display portion of a spreadsheet application, In all engineering disciplines and is, in fact, a basic property of
practice, the implementation would be based on “layers of abstrac- how people approach the world. We simply can't cope with
tion™ as shown in Figure 1. The spreadsheet would be implemented the full complexity of what goes on around us, so we have
on top of a window system, which would in turn be implemented to find models or approximations that capture the salient [ea-
on top of an operating system and so on down (not very far) to the tures we need to address at a given time, and gloss overissues
machine. not of immediate concen.
The horizontal lines in the figure are commonly called “abstrac- . - ; =
tion barriers,” “abstractions” or “interfaces.” Each provides useTul ® Sccond, is a convention that a primary place to draw an ab- | guv*
S straction boundary is between those aspects of a system’s be- & ;
*3333 Coyote Hill Rd, Palo Alto, CA 94304; (415)8124838; havior that are particular to a particular implementation vs.
Gregor@pare. xerox.com. e
1n this paper. the terms clienr and application are used o refer to a picee of soft- ‘3
@©1992 Xerox Corporation, All Rights Reserved. ware that makes wie of some lower-level software; i.e. the spreadsheetis a client of the
window system, V\J)

3

o

—

ok—,‘ﬁ‘"jw"h: éf/lv"'/

Wb Mfe Izrm Lotk L cﬁawpm-'m
Bt ﬂ-«uk o[_, 3 W;.V‘

by mabe b v le il -

fur i o psal

for i = 1 to 100
for 3 = 1 to 100
mkwindow(1006, 100, i*100, JF*1G0)
end
ond

Figure 2: A spreadsheet looks like a rectangular amay of celis. The simplest way to implement it 18 10 use one window for each cell.

those aspects of its behavior that common across all imple-
S—————— T

mentations.
————

& Third, is a sense that not only is the kind of abstraction bound-
ary that arises [rom the second panciple usell, itis in fact the
ondy one it appropriate to give to clients. That is, we believe
thatissues of an interface s implementation are not of concem
to, and should be complelely hidden (rom, clicnls.

(Naote that (he st of thesc i3 so busic (hat il rarcly, ut least in
onr field, pets explicit atteption. Rut aspuably, what our informal
notions of elegance, cleanliness, and orthogonality are about is the
degree to which an abstraction includes thase issues which are im-
portant without inctuding any that are not.}
ered on top of these three principles are our goals of porta-
bility, reusubility and in fwct the whole concept ol Rystem foftwane.
The idea has been that by taking commonly useful, “basement-level,”
functionality — memory allocators, file systcms, window systems,

databases, programminglanguagesete. ~— givingita general-purpose

interface, andisolating the client from the implementation, we could
make it possible for a wide range of clients to use the abstrachion
without caring about the implementation. Portability stems in par-
ticular from isolating the client from implementation details; this
makes it possible to have other implementations of the abstraclion
which the client code can be ported to. Reuse stems in parzcular
from making the abstraction general-purpose; the more geperal it
13, the wider a vanely of clients that can uscit.

In line with this story, it should be an easy maiter to implement
a spreadsheeton top of a clean, powerful window system. What is
neaded is just a rectangular ammay of cells; we need to be able to dis-
play and type in each cell independently, and we need to know when
the mouseis clicked overacell. Since this is exactly the functional-
ity & window system provides, the simplest way to code the spresd-
sheet is to use one window for each cell. This takes advanrage of
the high-level window system abstraction to cleanly express what
i desired, and makes maximal reuse of the existing window system
code A program written in this fashjon 13 shown in Figure 2.

This 18 absirection at i(s best. The code is yimple, clear, and we
can read it without having to know anything ahout the inner work-
ings of the underlying implementation. Ahstraction here ir doing
just what aur smatl minds need: making it possible for us to think
about important propertics of aur program — its behavior — with-
out having to think about the entirety of the machinations the under-
Iying hardware is having to perform o get it (© nm.

As wonderful as this may sound, few experienced programmers

muld be surpnsed ir thls code dldn Equite work. That1 18, it mght

p'ra_cti_cglssnxc_\mnhlcs& This can happcn |f thc mndow syswm

Rey @
o Tymor
il poripom

|

¥

v

N\

implementalion is nol Wined for this kind of use. As part of writ-
iny the window gystem, the implementor is faced with a number of
matier

tradeofFs, in the face of WhICK they must mak JoCISI0NS. NO Malt
what they do, the window sﬂ’ﬁf' Will end Gp laned for some appli-

¢
j’u

y

4‘

catons and apainstothers. In this case, the implementor might have \A‘J‘

assumed that 25 to 50 windowy wae a more typical number for an @
application to use than £, 800, They might also have assuned that
the typical configuration of windows would have animegular, mmsj
than highly-regulanized, geometry. Implemcntation decisions bas
on these assumplions, once made onte a I

are all tamubar w4th tis sortof situation, and probably have
a pood sense of how we would respond. But, stepping back and
looking through it carefully is fruillul. There are several points to
notice: (i) While the simple program in Figurc 2 may not perform
ailequately, it intended behavior ia perfectly clear. [n other words,
the window system abstraction ifself is adequate for cxpressing the
behavior lhe client programmer is after. (i) The fact that the im-
plementation will fail to provide adequale performance is nowhere
evident in the client code. That is, the window system abstraction
is not, in and of itsclf, belraying these propedics of the implemen-
tation. (Lt's also likely to be the case that this performance property
can’t be gleaned from reading the window system documentation.)

(1) So, predicting andfor understanding the perfo ies
of this prograni can on one with knowledge of intemzl ta

plemeniation detaily. “inaily, tt is relatively easy to imagine
an mmplementation of the window system in which this code would
perform adequatefy. Moreoves, such an implementation might not
be all that different from the existing one.” ~—

What is clear thea is that there is a basic discrepancy betsveen
our existing view of abstraclion and the reslity of day-to-day pro-
gramming. We say that we degign clean, powerfud abstractions that
hide their implementation, and then usc thosc abstmctions, without
thinking about their jmplementation, to build Ingher-levd {function-
ality. Bu thereall i3 ﬂmltheuml gntation 3

~
whh Mokides b mebe Hom 4,

w In fact, lhochmlpmgrammer i well awafeof them, and
1 limited by them just as they are by the abstraction itself. -
Looking ahead, the idea underlying the new abstraction frame-

The 8sa 18 whether 2 wisdow s a large atructure, wlich locally caches desived
propaties, or whether it iy 2 emall strueture, which continuslly recompates derived
peopertica {rom ite parcal {t.c. doca a8 window know its pesition, ar Joes it have to ask
its parcawt). In the laticr appeosch, a great deal of memory could be saved on the cefl
windows Ezch coudd be as amall a8 a word, or even (ake up no storage al 2l in more
sadied] arebnteetiren. In ahbdin ta swing oy, covtzin operations could be sqp-
ported move efficictly. For exgmple, (o tell which celf the roouse was over, tha mam
windowrcoudd, becase of the rogular geometey of the cclls, da aimyple arithmetic rather
Gan neing the tore general stochanism of polling all the cell ssindows.

for wo o dodsr B * WL‘Q/ T

e ol

ui-f e, é Cat clar an /'vyl"""""w abn Annlk 3‘7‘"3

ar i o iy Geeetudl Szt
AR S A

QG §ydn,
M}Jhu. b et

e~y b ow 3k

'1- prw

Jua

e

-4

—

work will be to Iry and preserve what i9 gond and essential about
our existing abstraction framework — éf?.ﬁ ally the first two bul-

[éted principles — while wv
@WW In doing this, the
Swategy to try and take advantage of the fact that very of-
len, a8 in this exampile, our abstractions themselves are suﬂ'm%
‘CXpressive and our impleatenialions may onl deficient o smal

WRYE. up doing is “opening up {
tation,” but doing so in a principled way, so that (he clicat doesn’t
have to be confronted with implementation issues all the time, and,

moreover, can address some implemeniation issues without having
to address them all

Outkine of tke Paper

The rest of this puper expunds this bagic argurment for open imple-
mentations. First, the consequences of the defictency in our cur-
rent abstraction framework ane discussed, using both the window
system example and an example (rom high-level progrmming lan-
guages. The application of metaobject protoco! technology to these
prablems is discussed, and the new model of abstraction, drawn out
from the inbuiliony wnderlying the metaobject protacal work, is pre-
yented Given the new model, it is possible o identify a wide range
of other work in the software coginceringcommunity which not enly
seems to confirm the intuition that the old model of abstractionis in-
vatid but which in fact seema to be headed in the same direction as
the framework presented in this papec Finally there is a discussion
of what future work might be required as part of continuing lo de-
velop this new abstraclion [ramework.

The Ovigins of Complexity and Portability Problems

Cages like the spreadsheetapplication, where am abstraction itsell is
uatelor the clienl's needs but the implerncniali

and 15 10 some way deficienf are common. The machinatiofis the
clumtprogrammens Torced into bylhesc suuahons makethmr code

Reample:mentauon of Iunchonallty is whal would mostly likely
happen in (his case, The sprexdsheel progmmmer would end up
wniting their own “littte window systemn,” that could draw boxes
on lhe screen, display in them, and handle mouse events. Reirple-
menting this way would allow the the programmer to ensure thal the
performance propertes met their particular needs. As suggested by

Figur 3, _M_n%,wwthﬂmmmw-s
way increases gize of the application, and, Herelore, the total

L & rmer m
n addition to making the application striclly larger, reimplemen-
talion of underlying functionality can also cause the rest of the ap-
plication — the code that simply uses the reimplemented function-
lity — to hecome mare complex. This happens if for some reason
the newly implemented furctionality cannot be used as elegantly as
the original underl ying functionality. This ir (urn can happenf, for
any reason, the programmer cannout manage to slide the new im-
plementation i under the old interface.
Oncx (be programmer is forced away from being able to use the
old interface, and into the problem of designing one af their own, 118
ql.ulclikbl)'lheywrm tdoasgoodajob. Simpl Ilcanon

to demgl the new mterface as clennlxtas might be nice.
(As an aside, its worth point ont even if the interface ends

up being just a3 {or more) clegant, one of the primary purposes of

WeAd A CLWL(M?I,

oxv,

Sk
b vf (e my‘

y - I3 oe! plication has
it |
App lcath_jg P e
window system
Window System
Operaling System

e heee!

Figure 3: The spreadsheet application aflce being revised around
the performance problems of the window system. The reimple-
mentaton of Munctionality which coul be ceured from the win-
dow syslem appears as ¥ *hematoma "1 e application. Each such
hematoma increases the size of (ke applicalion. In addition, the rest
of the application ¢an get more complex when it is rewritten to use
the new functonality.

high-level standardization — to be able to casily read each other’s
code — has boen defeated,)

Coding between the lines is happens when the application pro-
gremmer wites thor e n a C O i1 orger
To gel belter perdomnance. A classie example ig in the use of virtual
memory. In a progmm that ailocates a nunber of objects, there is
often a order to altocating Lthose abjects that is “natural” to the pro-
awm. Bul, if thers geet to be a Jorof chjects, and paging behavior be-
comes critical, people will often rewrtite the application 1o "alfocate:
the objects closc o cach other” and thereby et better performance.
This is coding betweer the lines because although the documented
virtual memory abstraction makes no mention about the physical
locatity of objects, the programmer manages to contort (heir code

enaugh to “speak to” the inside of the implementation and get the _|

performance they want

When mers are [orced into jtuafi i IS
calions me undu i ven less

e, [115 eagiest 1o see how this happens by starting with a hy-
pPothetical prototype implementation, coded on a machine that was
fust cnough that the progirnmer was not forced wto these sins, and
then looking at what happens as the application is moved to & deliv-
ery platform. (In reality, code is usually “optimized” when it is first
written, but this simpler case makes what happens more clear.)

The oniginal implementation is simple, clear and makes the great-
est re-use of the underlying abstractions (i.¢. the ssmple spreadshect
implementation). But, when it comes time o mave it to the delivery
platform, a number of performance problems come up that must be
solved, A wizard iy broughtin, and through tricks like those men-
tioncd above, munuges to improve the performance of the applica-
tion. Effectively, the wizand convodves the onigingl simple code with
their knowledge of inner wordngs of the delivery platform.® (The
(e convelves is chosen W stiggeat that, 4y a resull of the convolu-
ton, propertics of the code whick had been well focalized become
duplicated and spread out) [n the pracess, the code becomes more
complex and fmpficitfy conformant to the delivery platform. Wheg
it comes time o move it i anather plationm, the code is fpote dif-

3Note that putting il ts way expleins why the informal term “wizard” refers (o
soreans who not antly b good 2t woeking with a given absiraction i.e. a indow gys-
t=m), but who i3 Wyo inticmately familiar with the dwer workings of e implewenta
ton, Simply pat, e wizard is someoas who specializes at doing what our teditionst
abatraction Aory xays shnidd aever boppen. V\.P\"‘

neod Ko Cogide a Hle onme.

Wbt
dae
for
W

fa
P 5
psim
Z

M\lb"'
s

larger, mare
- ~ complex cod ?
original b impiicitly conforms :
simple i to platorm A —_—
code
development delivery dellvery
platform platiorm A plattarm B

Figure 4: When an application is oripinally written on a fast machine, the ¢ode can start ont being simple. To port the eode to a delivery
plalform a wizard — someone who understands the inrer workings of the delivery platform — is broughtin to tune the cade. The application
gets Jarger and more complex, and above all it becomes implicitly adapted to the delivery plaform. 1t is then even more difficuft to move it

to another platform. faud L 7 I

ficult fo work with, and because of the implicit confo it
cult to tell just why Bungs way they are. This is shown

1 Figure 4.

High-Level Languages

W"np [found a large number of programs perform poorly
because of the language's tendency to hide “what is

ﬁ\“w going on” with the misguided intention of “not
bothering the programmer with detaita.”

N.Wirth, “On the Design of Programntng
Languages.” [Wir74f

[want to fook next at the domain of high-level programming
languages, where the refiection end meta-level architsciures com-
munity has done a lot of sork to address these kands of problems.
First, [will show, psing the Common Lisp Object Systcm {CLOS)
[KeeB9, Ste20], how the same sorts of problems can come up. [wil
then show how those problems are addressed by the CLOS Metaob-

ject Protocol (CLOS MOP} [BKK Y 86, Kic92, KARBS1]. From there,

it will be possible to peneralize and present the new model of ab-
straction.
Consider the fotlowing CLOS class definitions:

{defclass positien ()
(x ¥3)

{defolasa person ()
(neme age asddresa ...))

The class position might be part of a graphics application,
where the instances are used to represent the pasition of the mouse
as it moves. The ¢lass defines two slots, x and y.* The behavior of
the application is such that there will be a very large number of in-
stances, both stots will be used in every instance and access to hose
slots shoutd be as fast as possible.

The second definition, porson, might come from 2 knowledge
representation system, where the instances are beingused as frames.
Ln this case, the class defines a thousand slots, comresponding to the
many praperties of people which might be known. As with the class
poeition, the behavior of the application means that a couple of
things are known: there wilt be a very lanze number of instances;
but In any given instance only a few slots will actrally be used.

1Sfart ia the CLAXS Lrm for the Selds of an inxtnnce.

£

Clearly, the ideal instance implementation sirategy is different
for the two classes. For pogition, an array-like strategy would
be ideal; it provides compact storage of instances, and rapid access
to the ® and y siots, Forpersgon, a hash-tahle like strategy wonld
be more appropriate, since it isn’t worth allocating space for a slot
until it is known that it wiil be used. This makes access slower, but
it is a worthwhile tradeoff given a large number of instances.

Whatis most likely to be the case, in a nin-of -the-mill CLOS im-
plementation sans MOPE? is that the implementor will have chosen
the array-like strategy. "I'he prospective author of the person class
will find themsclvesin a situation very much like that of the apread-
sheetimplementor above: \m_mww.
self is grfecdz adequate 16 express the bebavior they degigg, sup-

et propertes of the i mation — the instancerep-

tation strategy — are critically getting in the way.

Metacbject Protocols = Frak, daon

In this abridged version of the paper, this section is elided, since it
would be redundant for IMSA'22 Workshop atiendees.

For the evenmal audience of this paper, the goal of this section
will be to sketeh the sechanins of metaobject protocols, and to show
how, by careful design, a metechject protocoi can be used o alfow
the user o control critical espects of the language implementation
stralegy, without overwhehning them with what fruely are imple-
meiation details,

This sectionwill alyo discuss, more brigfly. kow metaobjects pro-
tocols can be used to provide the user controf over the semantics, or
behavior of a language.

In addition to the CLOS Metaobject Protocol, other MOPs und
reflective languages which might be discussedin fis sectioninciude

TELOS {Pad92}, ABCL/R2 (MWY9!], 3-KRSfMae87}, Anibus [Rod9i,

Rad92], Sartor {Ash92} and Ploy [Vah92{.

A New Moded of Abstraction

In the metaobject protocol a the client erds bp Wil
mms: ahase- and an (optonal) metz-lan
progranL The b3 i

5T O teclientpmimmcl‘mcfu 3 _gravided by
underlying s . The meta-lan o can customize

3 Atthia point Wl CLOS vendom [knaw of have plana ta rovids x sietaobiect pro-
ocud. So, u CLOS impleroentuticnsxtrs MOP 18 wateof a chetotical toal than a reality,

H"ﬁ dha L wink Lsembb.",- M"’- -t
Cim Staht ow Ghg it bt e ale

e v,
(A | rag ok N | 3oe

9. o) \,,x,u""w
N ’l“M .-(:‘ Q_}‘M mﬁ‘\.

e
~N

\A,, #f Tradnionat
\ r interface
0
mega‘mentaﬁm

abi Omet; Coady s .Q,L,u? 6&4?.

:—f_cgg_a@m_mmnd not be affected The window
ysfem case is analogous; some windows should use the im-
plementation tuned for spreadsheets whereas others should
use the defaoit implemenlalion,

. Concegtua!.reeamﬁounmans that it should be rEc_;.\i'eiiblc (o uge:
e meta-level interface to customize particular aspects ©

implementanion without having to unders -
IEv . 50, for cxample, the clicnt programmer who \?
wants to customize the instance implementation steategy shouldn't N’
also have to be concerned with the method dispatch mecha-

nism. This of course is difficult, since implemenlation issucs

<an sometimes havesuzpnsmyyFar-reachlngelfec!s Thbchalv

is to come up with a sulfi-
=g implememtation. ¥ 3
e fncrementality means that the ¢lient who decides to customize
some aspectof the ImEIementatmn (rudeoils wWants 1 4o Just
t. cusiormze e properiies. They don't want i0 have ,;

Ek_e total resm:mﬁlltyfor the implementation and TREY G 't
ant to end up Maving [0 witte a whole new implementation

from scratch. It must ible for ihem to say just whal it

18 Lhey want o have bedi 1hen autematical USE

the rest of the implemeniation This is the salient difference “gj
tween the more recent refleclive systems (Commn[bnps s:l .‘

3-KRS and beyond) and the original 3-Lisp work: by using

object-aniented lechniques, it has been possible to support the O}L-V -
incremental definition of new implementations Gnterpreters, & vl

det G

Adjustment

| / Intertace
-

Figure 5: The dual-interface framewark supports the notion of an
open implementation. The clieat first writes a base-program, and
theq, if necessary, writes & meta-program to customize the vndorly-
ing implementation to meet the base-program’s needs. The curved
arraw under the meta-level interface is intended to remind us that it
provides access to what have traditionally beeo intetnat properties
of the implementation,

('(2,{ 4!""‘"’! ?

Y

. Whm begms w© eme:ge isa “dual-mmf mcture somelhmg
like that shownin Fxgzm,s A high-level system (Le. CLOS

implementation issues. The client gL can
wotk with it without having to think about the underlying imple-
eRRnon
E g% ;ormosemses where the undedying implementation is nat
adequate, the clicnt has a more reasonable recourse. The meta-level
intetface provides them with the control need 1O d
iZ¢ The Implementation 10 beter ir needs. Thatis, by
owmnung up lo the facl that users needs access to implementafion is-
sues (ie instance implementetion stratepy), and providing an ex-
plicit interface for doing so, the metaobject protocol approach man-
ages to retain what is good about the first twa principles of abytrac-
tion,

It is much o cardy to attempt ko provide a complele account of
dual interface abstraclions, how to design (hem, how to use them
or what technologies can be used to support them. But, based on
experisnee with mutaobject protocals and other recent reflective and
meta-fevel architectures, some basic comments can be made.

First off, il appears thal the design of base-level interfaces can
bedmusmgcxmnng sk:lls As mentioned above, we have become

Mastering the design of meta-level interfaces, and, importantly,
the coupling between base-and meta-level interfacesis going to take
a areat deal more work. But we can enumerate four preliminary,
and closely interrelated, design principles: scope control, concep-
tual separalicn, incrementulity and robustress.

. Swwmmw-
level interface to customuze the implementation, the
Be given app te contyot ove uflza-
1on. can imagine various kinds of scope control. In the
CLOS example above, the programmer wanis to be able to
say both that they only want to affect the instance represeata-
tion strategy, and that only want certain classes(i.e. pexson)
to be affecked. Other classes, particulary classes that are part

hol

L tocols. But these approaches significantly restrict the pawer

$h -

runtimes etc.) using subclass specialization. (More is said
about object-oriented techniques later in the paper.)

of Robustress® simply means that bugs in a client’s meta-program

should have appropniately limited effect on the restof the vys-
tem. To date, moch of the work in the reflection and metacb-
Ject protocols community has provided only limited robust-
ness, eilher by checking the results of [unclional protecols, of
absorbing it {rom the underlying rimtime in imperative” pro-

/

of the protocol. In more recenl work, we arc beginning to ex-
plor: the vse of more declarative protocols, combined with
partial evaluation technigues to recover the performance Fovs
[Ash922]. This rcroaing @ major open problem.

These four principles are not entirely orthogonal, Take for ex-
ample, support for dcfining a pew instance implementation strat-
cgy in the CLOS MOE. Whilc it is easy lo say Ibat it does well on
each of the firat three, it is difficult to point to paricular parts of the
CLOS Melaobjeet Proloco] dedign and say ~ Seope control comes
from here and incremeatality comes from here.” Instead, they all
seem (o0 be intertwined; they all have 10 do with vanous kinds of
"locality.”

In lack, much of the recent work on refleclive systems can be

seen asexperiments with locality. Group-widc reffection, onc metaob-

Jeet per objeet languages, metaobjeets on a per-class basis, reify-
ing the generic funclion rather than letting the class bandle method
dispatch — all of these provide different kinds of locality control

[Coi87, IMWY91,JO%1, MaeB7, MWY9L, WY90, WYI1] (as well
as many of the other papers appearing in this mfkshop) What is
lhcmls noonenghtmmost T X e

“Thia teymn is some what problematic, os it hos particulrr techoicod meaning in wame
communitie, Later io the paper, it will beonme clear that wimtis needed in a tedo theae
o rome aense spans (at least) ol of safety, relisbility and seowity,

7In [RARBO1} we uscd the tenu procederal instead of tperattye.

ront el N e
P dlcke prev Cmph

1t ix also possible to make a basiec comment the e
designer -Interface a i
T vely. They start with a traditional ahsn'acuon

G.e. a window rystem or CILOB), and gradually add a meta-level

interface as it hecomes clear what kinds of wayr a close implemen-

tation can cause problems for the users. Moreover, it jan't a

idea to try and make the first version of a new kind ol system open
(this sense. Opening the implementation criticatly depends on un-

ngnot Jjust one implermentanon the clients mlghl want, but

also the various kinds of variability around that point they tight
want, In this mode of working, user bug-reports and ccomplaints
thwut previoys versions of the system take on an important value,

We can look for places where users complained that they wanted
to do X, but the implementation didn't support it; the idea is to add
encughcontod in the meta-level interf#ce tomake it possible to cus-
tomize the implementation enough to make X viable. (In fact, in
wark on the CLOS Metaobject Prokacol, wespentalot of Gme think-
ng ahout these Kinds of bug reports.)

Another way of thinking about the design of meta-level inter-
faees can be found in a 1980 paper by Mary Shaw and Wm. Wulf
[SWEOL, in which they present an interesting (and prescient) intu-
ition about the gituation: “Traditionally, the designers and imple-
mentors of programming languages have made a number of deci-
sionsabout the nature and representation of ianguaas features that. ..
are unnecessarily preemptive.” By preemplive, they mean a deci-
sjon, on the part of the implementor (or the language designer), that
preemipts the programmer from being able to use a language feature
in a way that otherwise appeans natural. (A specific example they
give has to do with the choice of representation of arrays.) Thetr
paper is focnsed primarily on propramming languape implementa-
tions, but the notion of preemption is a powerful one to work with
when thinking aboul any kind of mela-level interface. It suggesis
thatanytime we find ourselves saying “well, I'll implement tus fea-

ture a particular way because I think mast users will doX,” we should

mmedialely think about the other uscrs, the ones whose options we

ar¢.abpnt to preempl, and how, wsing a meta-level interface, we might

allow them to customize things o they can do other than X,

A Recap

At this point, it is possible to give a capsule summary of the ampu-
ment 5o fan

In practice, high-level abstractions often cannot hide
their implementations — the perfonmance charactenis-
tica ghow througly, the useris aware of them, and would
be well-served by being able to control them. This hap-

)6/ pens becavscmaking sny concreteimplementation of 2
high-level sygterm requires coming (o lemms with s num-
ber of tradeols, It simply isn'l possible o provide a
single, fixed, closed implementation of such a system
thatis “goad enough” that all prospective users will be
happy wilh it. In other words, the third principle of ab-
strachion presented above appeans to be invalid, at least
in acfual praclice.

Work on metaobject protocols and other meta-level ar-

chitectures supgeats a tew abstraction framework that

beiter addressesthe need for open implementations. Un-
j ented

onality 111 a traditional way and ano that provides
conE; overthe intemat un%!emematl@ siratepies sup-

porting that functionaiity, Tiita approach retains the first
e e ——— ey

g{w\: u-r')é%m.?—w A

Cormarte™y ?fbf lﬂrca-u A LW.

o principles of the old abatraction framework, drop-
ping only the thied.

Looking At Other Work

With this summarization in mind, it becomes possible to look for
ather arear whete open implementations and dual interface abstrac-
tions could be particulasfy advantageous. In doing so, whal we are
tryfing to agsess is how much of the ampument presented above ap-
plies in domains other than high-level programming languagces. Clearly
we would expect the basic angument for open implementations to
move acrosd — after al], we started with a wirdow-system not a
programming lanpoage. On the other hand, we may or may pot ex-
pect the concept of metanbject protocols (or at toast our current no-
tinn of them) to move t0 memory systems or schedulers. And in
between those twa levels are the crucial intermediary notions of lo-
cality, reflection, meta, and object-oriented programming. By look-
ing at other examples, we hope to get a better sense of the overall
picture and where each of these important concepts fits in it

We are looking lor Rystems of more than modest functionality,
yet where performance is an issue. The whole category of system
poftware -~ operating systemg, window systems, database gysterns,
RPC mcchanisms ¢te. — 19 & natural place 10 look. The abstrac-
tions have been well-honed over the years, there is tremendous un-
derstanding of the different kinds of implementation stratcgics thal
can be useful and, hecause these systems underlie everything else
we build, the potential payofl of increased understanding of their
nature is large.

It turns out thal not only does work in thuse arcas appear to sup-
port the basic appument far open implementations, but in fact there
appcars to be a lot of work atrerdy going on thalis doving in similar
dircetions,

Programnuing Langusges

ﬂﬂﬂ&f’_m%Wm some sense, compiler prag-
fas were the furst example of this — they can be thovght of as open
implementations with a "declartive” meta-level interface.

In Hermes [Hermes book], several of the huilt-in data structures
come with a small collecton of dffcrent implementations. This,
Jike pragmas, is # step in the dircetion of open implementations —
severdl Implementutions is after atl more than one, and letting the
user choose is a step in the direction of openness. But, it does not
completely solve the problem because there 9 no veason to believe
that some prospective users will not want an implementation (hat
is different from any of the ones provided The desipners of Her-
mes are aware of this limitation, il is just that their concern for ro-
bustness(safety in particular) has so (ar prevented them from adopt-
ing the more powerful reflective or metaobject protocol (vehniques
{Yemeni, private conversation). One posstbility might be to add an
internal metaobject protocol, which the designerscould use (0 quickly
provide clicnts with newly requested impiementations, but which
would not be documented to normmal users.

As discussed by Rodriguez [Rod92], the sarme sort of situation
can be seen in languages for paratlel programming. A Key prob-
lem in this domain is that a compiler that attempts fo automatically
choose program’s parallelizzation is often unable to do so optimally.
Having recopnized this problem, this community bas developed ar-
chitectures that allow the programmer to step in, in vanous ways,
anddirect the parallelization [Ber90, CiCL88, Hoa85, LR91, Lue®7,
YiC90]. Thesc systemis boar varying degrees of resemblance to ex-
plicit meta-level architectures, with one key difference being that

evel.
At least one language has gone farther, to have what is clearly
a metaobject protocol, the only difference being that they don™t use
the terminology we do. Joshua is a rule-hased inference system de-
velopedat Symbolics [RSC87). Because Joshuais such a high-level
tanguage, its defaull implementation can perform quitc poorly on
some examples. By allowing the client to step in and customize
the inference mechanism lo belter suil the particular example, they
sometimes get substantial perfformance improvements | Shrobe, pri-
vate conversation).

Operating Systems

The operating syskem community [ong ago begun to push up against
the boundaries of the traditional black-box abstrction framework.
Very eardy on, virtual memory systems provided limited meta-level
interfaces that allowed clients to infiuence what page-roplacement
stratepy was uged (i.e. the Unix madvise facility). More recently,
there has beena move, starting with systems like the Mach extemal
pager, from the declarative approgch (0 an approach more like that
of metaobject prolocols. Specifically, they are using object-oriented
and imperative lechnigues to organize the meta-level.

Using this more poweiful imperalive approach, there has been
similar work opening up thread packaperand Inad-balancingmech-
anisms [ALL89]. In fact, people associated with this work have,
more recently, been explicitly queslioning the validity of the tra-
ditional closed-implementation notion of system software in many
of the same ways discussed in this paper[Anderson, talk at PARC)
(Within the reflection community, there is of course the Muse work
at Sony, which has been explicitly addressing these issues for some
time [YTTS9])

[n the operaling system community, where there is a great deal
ol emphasis on reliability, the architectures have been interestingly
different than in the metaobject protocol community. They have
done a much betler job of achicving robustness. The vanous ef-
fors at reducing the size of the kemel are Jargely driven by a desire
to make as much of the traditional aperating system functionality
uscr-replaceable. On the other hand, even though there is no appar-
ent tradeoff beiween rohusmess and incrementality, they have deme
much less well at providing incrementality.

Other Systems

Looking at other kinds of systems software turns up simila: kinds
of work, although perhaps not as agpressively open as in the op-
erating system cornmunity. There arc intercsting things to be said
about databases, RPC mechanisms and document procossing yys-
tems. In fact, the spreadsheet example presented in this paper wag
drawn from work at PARC which explicitly addressed the applica-
bility of metaobject protocod ideas o the window system domain
[Reo90, Rao91).

Future Work

Changing something as fundamental a3 our underlying conception
of abstraction is not going to be a amall task. All of owr current do-
sign principles, conveations, tools, techniques, documentation prin-
ciples, programming languages and more rest on the mon: Tunda-
mental notion of abstraction. This section provides a short sampling
of what might tieed to be done, ranging from the relatively straight-
forward — assuning oursetves that the need for open implementa-
tions and a comrespoading revision of our abstraction framework i3
in fact genwine — the more far reaching — working out the ram-
ifications of this revision, and what {t will take & get it to work.

Much of what needs to be done involves looking at basic ¢con-
cepis i soltwan: cngineenng practics, o see how they depend on
the old mode] of abatraction and how they might need to be revised
This includes issucs like portability, software building blocks and
top-down programming.

Comploxity and Portability Revisited

A primary issue to be addressed hasto do with what the conscgquencees
of the open implementation argurnent is [or portability and com-
plexity. Oune of the coraments I often hear, when | talk about the
melaobject protocal work, is that opening up implementations in
this way will cause client code to be more complex and create poria-
hility problems. The goal ia of course very much the opposita: to
muke code simpler and improve portability, But, these ideay makss
prople ncrvous; il is important that the meta-leyel architectures com-
munity be able 1o addross their concerns carcfully.

The criticism ffom skepticsis: (1) You are allowing the client to
muck with implementation issucs (hat wsed to be hidden. (1) This
will resultin code thatis more complex, and wedded to features spe-
cilic (o the implementation. (iii} Thiy will make the code mor dif-
ficult to sork with and less portable.

The counterargumentis: (i} Clients already are aware of the im-
plementation issues, itis just that we have been trying to pretend that
wasn‘t the case. That s the whole thrust of the first part of the pa-
per. (i) We befieve that client code will be simpler, because it will
be uble 10 reuse morc of the vnderlying functiopality. There woa't
be hematomas and ather complexities that currently result from per-
formance problems in the library functionality. It is also important
to understand thar the meta-level interface is not implementation-
specific. It applies to al] implementations of the system. What is
implementation-specificis the default implementation. So, the mefa-
program, since it is a customization of the default implementation,
may endup dependingon properties of the implementation for which
itia written buk (2} programa already eve implementation-specific;
(b) in the new (rrmework this dependence will be more caplicit sinee
itwill be isolated to the meta-program; and () if thers is less code
to work with it will be easier to work with no matter what

Higher-Level Building Blocks

The conceptof aopen implementations has significunt mmificatons
on our concepts of what kinds of building blocks it might be passi-
ble to work with in the futare, Leatning how to make clean, pow-
erflul open implementations should result in being able to build and
woik with higher-level building blocks, which showld tn urn result
in simpler application programs. This expectation is based on the
beliel thut what has kept us from being able (o sucocssfuily develop
very high Jevel libravies has been our inability to provide (closed)
implementations that pleascd coough users,

The programming langeage domain is perhaps the place where
it is moat clear that a large part of what has kept us at a low-level is
the: closed implementation frrmework, High-level koguages have
enjoyed limted seceessin lage part due to pedormarnce problems.
We haven tbeenable to get good enough performance ovtof higher-
level languages because we haven't been able to write compilers
that are “smarl cnough™ o satisly all the uyers. But, the open im-
plementation idea fundamentally acknowiedges that if a language
18 more than modesty high-level, it simply i3n't pogsible to butld
a clowed compiler that is smart crough. We musl instead open the
compiler up so that the programmer, Who knows a great deat about
how \hey want their program to be compiled, can step in and help.

Thia restraining force on high-level lanpuagesis particularly ev-
ident in the earier quote from Wirth. Essentaily, ks argument iy

% x

that since it isn't possible o properdy implement high-level func-
tionality (using a closed implementation), the janguage should he
restricted o providing only low-level functionality. The question
now is whether open implementationr and the dual intedface absirac-
tion framework make it possible to make truly high-Tovel lunguages
with good performance. Expenirnenls need to be done with a variety
af such Janguages

Top Dovwn Programming vs. Reuse

In the previously mentioned paper by Shaw & Wull they make lhe

claim (hat top-down programming is fundamentally at odds with

reusable code tibraries and even the nation of aystem software, Their
argument, as | undezsmnd it, is that a reusable library essemmllz'

bl , the dovmward flow of desi

from lealang into the library’s

implementation as we would like.
Their argument is essentially compatible with the one presented

in this paper. Trom the dual interface abstraction point of view, the
conflict is not n ing and reusable cade;
it 1§ Bebween lop down programming and closed implementations
of reusable code. This leads to another way of thinking open

xmplemenmtlons complementary to the dual interface model_The
i . 1t provides basic

mplementation) but also allows the userto “pourin” im; t cus-
“formzatons from above to i 1t uE"

Work reeds to be done to go hack and Jook at top-down pro-
gramming and 1he conflict Shaw & Wuif mention to see how it in-
forms the open implementation and dualinterface abstraction me-
warks.

Muftiple Open Layers

This view of top-down programming makes it clear that opening an
implementation only to the clicnt immediately abave ig not enough.
We nced to do better than that; all layers need to be open toall layers
above them. So, for example, when an application i written on top
of a high-level language, which itself sits on top of a virmal mem-
ary aystem, the application code needs (6 be able to control not just
how the language uses the memory itis allocated, but also how that
vir{ual memory system allocales that memory.

Work needs1o be done ta develop this ability to push down, through

muitple levels ol abstraction this way.

Open Behavior

‘The discussionin this paperbegins to provide an explanation of part
of the problem metaobject protocels are solving — specificaily, the

need for open implementations. But a clear lesson (rom the metaob-

Ject proloco] work is

needs 1o be done to integrate the need for apen hehavior,
and (e way (hat meta-level architectures provide it, into the angu-
ment presented in this papet and into any new abstraction frame-
waork that is developed.

Mastering Locality

The dual interface ramework 18 similar o the way in which one
might expectthe comversation between the human providerand client
of a system to talk. Much of the time they would just talk about the
(unetionulity that would be provided. Atather times they would “go

meta” and talk about how the lunctionality was going to be used and
wrugral perdomance issues,

And it 18 by making thia analogy with the discussion hetween
humans thal we can get some insight into the problems that we will
face in really trying to get this to work: very aften, the concepts that
are most natural to use at the meta-level cross-cut those provided at
the base-level. What it seems we want to be able to do is to allow
the pger bo use nalural base-level eomeepts and natural meta-devel

not necessanly eas' i

Take, asanexample.ﬂle userof a L:spulll:e language who wants
to control the tagging strategy for certain objects within a certain
part of theit program. [t's quite natural for them to say something
like: “Use immediate tagging for fixnums and positions, fag rect-
angles and tines in the pointer, and tag evervthing else in the actual

object representations.” But, it wonld be surprising to find an ex-
isttng compiler in which making this change was easy, much Tess
one that could be persuaded to have just part of a program work this
way. {CGetting such a compiler architecture is the thrust of the work
reported in [LKRRQZ])

Wea 3

vide tvo effective

work, m the general cuse, appears 10 be quike difficwlt; aside from
crystallizing it as 2 problem, there isn"t much to say about it al this
time. .

Onesteategy — the one thathag been prevalent in existing meta- X
level architeetitres — i to make the problem casier by defaying the
implemcntation of stmtcgy selection unti] run-time or thereabouta.
So, for example, the existing metanbject protacols addresk only thase
issues which do not need to be handled in a compile-time fashion.
The various systems that addressdistribution, coneurrency and real-
time [other papers in (his proceedings] are also sddressing problems
whicl are amenable to architectures with runtime dispatch.

An important point is that this problem, of having to handle two
cross-cutting localities, 180t due to the dual-interface framework It
is a Jundamental problem, it has always been there and it will always
be there. The structare of complex systems iy such that it is natural
for people to make this jump from onc locality (o another, and we
have to find a way to supportthat. All the dual-interface framework
doesis (i} make it more clear that this problem needs to be soived,
and (ii), give one particular organization to the relation between the
two different localities. Of course, looking at the problem this way
makes it clear that we may well want more than (W, crogs-cutting,
eflective interfaces to u syviem — the duafinterface framework may
quickly become the mulfi-interface framewark.

Summary

It runs deep in our field that we consider ourselves to be bascd on
mathematics. This leadsus to try and take many of our basic notions
from mathematics. "The fact that A belsorand Sussman would quolc
Weyl (ke way they do is evidence of this,

But, while (his appeal o mathematics for conceptual founda-
tions may be altractive, itis, at leastin the case of abstraction, rsky:
“T'here is a deep difference between what we do and whut mathemat-
ciansdo, The “sbstruclions” we manipulate are not, in point of fact,

ghstract, Theéy 2 of uoning on eal
machipes, consuming real enerzy wn] Ta at-

mpl to compleicly ignore the undedying implementation is !iI:'g
e ————— ——

3 Effective reana essentinly e same Wing that “cansally commected (i Snith’s
cartier work.

.)a—

trying to completely ignore the laws of physics: it may be templing

but it won't %t us very far.
. Instead, what 1s possible is (o temporarily set aside concern for

some (o even all) of the laws of physics. This 18 what the dual in-
terface mode] does: In (he base-level inter{ace we set physj i

and focus on what behavior e wa 1ld: jg the meta-level in-
ace we respect physics by making sure that lhe underlying im-
plementation efficien Because the

lwao are separate, we can work with one withoul the other, in accor-

dancc with the Erg’maﬂ Furpow of abstrction, whichis o giycusa

hnndleocnoomF exity. Buk, use the two are coupled, we havean

celve e on the underlying implementation when we needit.

I like 10 call this kind of abstraction, in which we sumctimes elide,

but neverignore the underlying implementation “physicaliy comect
uting.”

This is also like what the mechanical engineers call modeling,
where they take mulfiple independent models of a system, each of
which highlights certain properties and se{s others aside. Cf course
a mechanical engineer s mexlels aren 't efective, and we would like
owrs to be — that is a fundamental difference in what we do and
ts why we can’t borrow directly from them. But, it is the case that
we are engineers not mathematicians \We would do better to ook
to other engineering disciplines, and not solely to mathematics, lor
our panciples of abstrwetion,

This is, T think, the rzal contribution of the argument in this pa-

, the notion that two interfaces are enough, the role
of objeet-oriented programming, the notion of mets; all of these arc
inherently approximate. What will remain, in the lonp term, is the

uircatenl that
open implementations.

Acknowledgments

[would tike to thank Hal Abelrou, J. Michael Ashley, Alan Bawden,
Danny Bobrow, Joha Scely Brown, Jim des Rivigves, Mike Dixon,
John Lemping, Ramana Rao, Jonathan Rees, Luis Rodriguez, Bk
Ruf, Briun Cantwell Smith, Marvin Theimer and Brent Welch for
countless hours of discussion working out the ideus tn this paper.
For their comments and leedback on carhier drafts of this paper
itself, T would like to thank J. Michael Ashley, Danny Bobrow, Jim

 des Rivieneg, Mike Dixon, John Lamping and Luis Rodniguez

References
[ALL39] T. Anderson, E Lazowska, and H Levy. The pcrior
mance implications of thread manugementalicmatives
lor sharcd memory multiprocessors, In JEEE Tranvac-
tious on Compuiers, 3812}, pages 1631-1644. |EEE,
1989,

|AshS2]). Michael Ashley. Opea compilers. To appearin forth.
coming PARC Technical Report, August 1992
[BerS3] Andrew Berlinn. Partial evalvation applied to numeri-
. cal computation. In Lisp and Finictional Programming
Conference, pages 139-150, 1990,
[BKK*86} D.G. Bobrow, K. Kahn, . Kiczales, L. Masinter,

M. Stefik, and E Zdybel. Commonloops: Merging
Lisp and ohject-oriented propramming. In OOFPSLA
'86 Conference Proceedings, Sigplan Notices 21(11).
ACM, Nov 1986.

{Coig7]

[Hioags)

IMWY9IT

((O21]

[KdRBS1]

[Kec89)

1Kic92])

ILKRR92]

[LR91]

[LucB7]

[vineB7]

IMWYSIL)

[Pad92]

o

Y A-sh ?

piling paraltel programs by optimizing performance.
The Journal of Supercomputing, 2(2y.171-207, Oclo-
ber 1988,

HFerre Cointe. Metaclasses are first class: The Ob-
jVlisp model. In Proceedings of the ACM Confer-
ence on Qbject-Oriented Programming Systems, Lan-
guages, and Applications (OOFSLA}, Orlando, IL,
pages 156-167, 1987.

C. A_R. Hoare. Comnuaicating Sequential Processes.
Preatice-1Iall, 1985.

Yuui Iehisupi, Satoshi Matsuoka, Takuo Watanabe,
and Akinon Yonezawa. An object-oniented concument
reflective architecture for disttibuted computing envi-
ronment. In 8tk Conferauce Proceedings, Japan So-
ciety for Software Scicnce and technology, September
1991. (in Japanese).

Yutaka Ishikawa and Hideaki Okamura, A new re-
flective aichitecture: AL-1 appreach. In Proceedings
of the OOPSLA Workshop on Reflection and Metaleve!
Architeciures in Object-Oriented Programnsing, 1991,

Grugor Kiczules, Jim des Rivitres, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol, MIT Press,
1991

Sonya E. Keene, Object-Oriegnfed Programming
in Conrnon Lisp: A Programmer’s Guide o CLOS.
Addison-Wesley, 1989,

Grepor Kiczales. Metaobject protocols — why we
want them and what else they can do. In Andrcus
Paepcke, editor, Object-Oriented Programeming: The
CLOS Perspective. MIT Press, 1992.

John Lamping, Gregor Kiczales, Luis H. Rodnguezlr.,
and Erik Ruf. An architecture for an open comgpiler.
In Proccedingsof the IMSA'92 Workshop on Refiection
and Meta-level Architectures, 1992, Also to appear in
forthcaming PARC Technical Report

Monica 8. Lam and Martin €. Rinard Coarse-griin
parallel programming inJade, In TAPdACM SIGPLAN
Symposiumaon Principles and Fractice of Paraftel Pro-
granuning, pages 94-105, 1991,

John M. Lucusset, Types and effects: Towards
the integration of functional and iroperative program-
ming Technical Report MIT/LCS/TR-408, MIT, Au-
gust 1987,

Pattie Maes. Concepts and experimenis in compula-
tional reflection. In Proceedings of the ACM Confer-
ence on Object-Orlented Programming Systems, Lan-
guages, and Applications {OOPSLA), pages 147-155,
1987.

Sashi Matsuoka, Takuo Watanabe, and Ald-
non Yonczawa Hybrid group refleclive architectune
Tor object-oricnied concurrent reflective programming,
[n Ewrapean Conference on Object Oricnled Program-
ming, pages 231-250, 1901.

The Eulisp Definition, Aptil 1992. Draft

b

*

N

sl N : 2

. Ay Ampr il "pfw"‘m:
J'ﬂ* Suf’t s sk rendd hdle H
[CICL88] Munna Chen, Young il Choo, and Jingke Li. Com- M

7

[R26%0] Ramana Rac. Implementational refiection in Sil- (ECQOF), July 1989. (also available as a technical re-
tca InInformal Proceedings of ECOOPIOOPSLA 99 port SCSL-TR-8%-001, Sony Computer Science Labo-
Warkshop on Reflection and Metalevel Architecturexin rzlory Inc.).

Object-Oriented Programming, Oclaber 1990

[Rao91] Ramana Rao. Implementational reflection in Silica. In
Pierre Amenica, editor, Proceedings of European Con-
Jerence on Object-Oriented Programming (ECOOFP),
volume 512 of Lecture Notes in Computer Science,
pages 251-267. Springer-Verlag, 1991.

[Rod®1] Luis H. Rodriguez Jy. Coursc-grained parallelism using
metaobject protocols. Master's thesis, Massachuselts
[nstimte of Technology, 1991,

[Rod92] Luis H. Rodsiguez Jr. Towards a better understanding
of ompile-time mops for paralfelizing compilers. In
Proceedings of the IMSA’?2 Workshop on Reflection
and Meta-level Architectires, 1992. Alro to appear in
forthcoming PARC Tecknical Report.

[RSCB7] Steve Rowley, Howard Shrobe, and Robert Cassels.
Joshua: Uniform access to heteropeneous Knowledgy
slructures or Why Joshua is better than cotmiving or
planning. In Proceedings of the Sixih National Con-
Jerence on Artificial Imtelligence, pagcs 48-58, 1987,

[SteS0] Guy L. Steele. Commemn Lisp: The Language {second
edition). Digital Prcss, 1990,

[SWE0] My Shaw and Wm. A. Wull. Towards relaxing as-
surnptions in languages and their implementations, In%
SIGPLAN Notices 15, 3, pages 45-51,] 9&i(},

[Vah92) Amin Vahdar The desipn of a metaohject prolocol
controdling the behaviorof a scheme interpreter. To ap-
pear in forthcoming PARC Technical Repuit., Avgust ke
1992

[Wir7d] Niklaus Wisth. On the design of programming lan- v
guages, In Mnformuation Processing 74, 1974,

[WY90] Takuo Watanabe and Akinori Yonezawa An actor-
based metalevel architecture for proup-wide reflec-
tion, Infnformal Proceedingsof ECOOPIOOPSLA "X
Workshapon Reflection and Metalevel Architecturesin
Object-Oriented Programming, October 1990, (Fx-
tendud Abslrect of [WY91]).

fWY21] lakue

Watanabeand Akinon Yonezawa. An actor-based met-
alevel architeclure for group-wide reflection. InJ. W.
de Bakker, W, P, de Roever, and G. Rozemberg, editarg,
Praceeding s of REX Schaol!Workshop on Foundations
af Object-Oriented Languages (REX/FQOL), Noord-
wifkerhout, the Neiherlands, May, 1990, mnunber 489
in Lectare Notes in Computer Science, pages 405423,
Springer Verlag, 1991.

[ViC20} 1. Allen Yang and Young il Choo, Meta-crystal - a met-
alanguage lor paratlel-program optimization. Tech-
nical Report YALEU/DCS/TR-786, Yale University,
April 1990,

{YTI¥9] Yasuhiko Yokote, Fumio Terzoka, and Marto Tokoro.
A reflective architecture for an object-oriented dis-
tiibuted operating system. In Proceedings of Eu-
ropzan Conference on Object-Oriented Programming

